60,263 research outputs found

    Unstable and Stable Galaxy Models

    Full text link
    To determine the stability and instability of a given steady galaxy configuration is one of the fundamental problems in the Vlasov theory for galaxy dynamics. In this article, we study the stability of isotropic spherical symmetric galaxy models f0(E)f_{0}(E), for which the distribution function f0f_{0} depends on the particle energy EE only. In the first part of the article, we derive the first sufficient criterion for linear instability of f0(E):f_{0}(E): f0(E)f_{0}(E) is linearly unstable if the second-order operator A0β‰‘βˆ’Ξ”+4Ο€βˆ«f0β€²(E){Iβˆ’P}dv A_{0}\equiv-\Delta+4\pi\int f_{0}^{\prime}(E)\{I-\mathcal{P}\}dv has a negative direction, where P\mathcal{P} is the projection onto the function space {g(E,L)},\{g(E,L)\}, LL being the angular momentum [see the explicit formula (\ref{A0-radial})]. In the second part of the article, we prove that for the important King model, the corresponding A0A_{0} is positive definite. Such a positivity leads to the nonlinear stability of the King model under all spherically symmetric perturbations.Comment: to appear in Comm. Math. Phy
    • …
    corecore